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ABSTRACT  
Validity researchers typically work with nonrandom samples, membership in which depends in 
part on the exam score being investigated. In a study of the SAT’s validity for freshman GPA at 
a particular college, for example, FGPA is not observed for the entire pool of potential 
applicants, but only for those who are admitted and enroll. This sample selection biases validity 
estimates. Corrections for restriction of range remedy the problem only when the exam score is 
the sole determinant of selection, and even then do not permit consistent estimation of the 
exam’s incremental validity. Regression omitted variables results motivate a proposed validity 
estimator that is consistent whenever the determinants of selection are observed. An algorithm 
is suggested for calculation of these “robust” validity coefficients, and used to estimate the 
SAT’s validity at the University of California. The usual validity estimates are shown to be 
substantially biased, in the hypothesized directions, by admissions-induced sample selection.  
 
 
 
1. INTRODUCTION  
 
Researchers frequently use observational samples to estimate the predictive validity of an exam 
score. The exam score in question commonly plays a direct role in the process by which test-
takers enter the sample. Many SAT validity studies, for example, use students attending a 
single college; we are of course most interested in the SAT’s validity at selective colleges that 
consider SAT scores in admissions. In situations like this, the within-sample validity coefficient 
may not be an appropriate estimate of the population validity.  
                                                 
* I thank the Center for Studies in Higher Education at the University of California, Berkeley, and a 
National Science Foundation Graduate Student Fellowship for research support. I am grateful to David 
Card, David Lee, Justin McCrary, Jack Porter, and seminar participants at Berkeley and Princeton for 
helpful suggestions. This paper extends results that were first introduced in Rothstein (2002). 
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In an effort to fix this problem, researchers frequently correct validity coefficients “for restriction 
of range” (Camara and Echternacht, 2000; Willingham et al., 1990; Breland, 1979). However, 
validity estimates with the usual Pearson-Lawley correction (Gulliksen, 1950; Bridgeman et al., 
2000) are free of selection bias only under very specific, infrequently satisfied assumptions 
about the selection process. Namely, the sample must be selected purely on the basis of the 
exam score itself; other variables that might have independent predictive power for the outcome 
in question must not enter into the selection process. The situation is even worse when the 
parameter of interest is the exam’s incremental validity. Here, range-corrected validities are 
inappropriate whenever the exam score is even a partial determinant of selection.1  
 
An analogy is perhaps helpful. Consider the validity of height for the prediction of performance 
on the basketball court. If we could measure performance for a representative sample of the 
population, it would surely be strongly correlated with players’ height. But suppose that we were 
instead to estimate the correlation on a sample of National Basketball Association players. This 
sample would certainly have a much smaller range of heights than the population as a whole, so 
one might think that the range-corrected within-sample estimate would be appropriate. But a 
consideration of the sample selection reveals that the problems do not end with restricted range 
of the predictor.  
 
Individuals can only enter the NBA sample if they have high “basketball performance.” In 
particular, short players only make it to the NBA if their athleticism and native ability are so 
exceptional as to make up for the disadvantage conferred by their height. Tall players are not so 
strongly selected for native ability, as they do not have to overcome a height disadvantage. 
Thus, it seems likely that mean native ability is higher among short NBA players than among 
their tall teammates. This would lower the correlation between height and performance in the 
sample. Indeed, it might be that height has zero predictive power within the selected NBA 
sample, but a great deal of power in the population. The problem is fundamentally one of 
omitted variables: Estimates of height’s validity or incremental validity that do not take into 
account the interaction of height with native ability in sample selection will not be informative 
about the population relationship.  
 
I propose here an alternative approach to the estimation of validity coefficients in samples 
selected partly on the basis of the score to be evaluated. The new approach embeds validity 
estimation in a linear regression framework, and uses omitted variables results to obtain validity 
coefficients that are robust to more general selection assumptions than are required for 
traditional validity and incremental validity estimates. My approach can be more demanding in 
terms of data availability than is the traditional approach, but even when not all of the required 
data are available it suggests a useful diagnostic for the presence of serious selection problems 
in traditional validity estimates.  
 
My critique of traditional validity estimates and my alternative approach are applicable in many 
psychometric contexts. For expository purposes, however, I focus on an illustrative example, 
SAT-based predictions of freshman grade point average (FGPA) at the University of California.2 

                                                 
1 By “inappropriate,” I mean biased in the limit, or inconsistent: the estimate will not converge to the 
population value even as the sample size goes to infinity. Mangling ordinary usage, I sometimes call a 
consistent estimator “unbiased.” The finite-sample properties—to which “unbiased” ordinarily refers—of 
correlation coefficients are quite complex and beyond the scope of this paper (van der Vaart, 1998, pg. 
30-31). 
2 Here and throughout, I use “SAT” to refer interchangeably to the pre-1995 SAT exam and to the post-
1995 SAT I exam. 

CSHE Research & Occasional Paper Series 



 
Rothstein, ADMISSIONS BIAS 3 
 
I consider the estimation of two parameters that are of frequent interest: the SAT’s univariate 
validity and its incremental validity when baseline predictions consider only the high school 
grade point average (HSGPA).  
 
The University of California (UC) has several attractive properties for my purposes. In particular, 
the UC system’s exact eligibility formula is published annually and, for the 1993 entering class 
considered here, is based almost exclusively on a student’s HSGPA and SAT. This means 
that—subject to the maintained assumption that sample selection comes purely through the 
admissions decision and not through students’ application and enrollment decisions—I can 
observe the distribution of all determinants of sample selection in both the sample and the 
population, reducing what is ordinarily intractable “selection on unobservables” to more 
manageable “selection on observables.” This is precisely what my estimation strategy requires.  
 
I find that traditional estimation techniques applied to an appropriate sample understate the 
SAT’s uncontrolled validity but overstate its incremental validity, by ten and seven percent 
respectively, for University of California FGPAs. I see no reason to believe that the example 
used here is unique; it seems likely that traditional validity estimates from other colleges and 
contexts are similarly erroneous.  
 
The paper proceeds as follows. In Section 2, I introduce the University of California data and 
discuss the UC admissions process. I also present SAT validity estimates for this sample using 
the traditional methodology. In Section 3, I provide evidence that admissions rules bias 
univariate validity coefficients downward and incremental validity coefficients upward. Neither 
form of bias is repaired by the usual restriction of range corrections. Section 4 outlines an 
algorithm, derived from regression omitted variables results, for calculating validity coefficients 
that are free of admissions-induced selection bias. Section 5 applies the new approach to the 
UC data, confirming the presence of serious selection bias in estimates derived from the usual 
methodology. Section 6 concludes.  
 
 
2. ADMISSIONS AT THE UNIVERSITY OF CALIFORNIA  
 
The data used in the present analysis are extracted from a University of California 
administrative database and describe the class of in-state freshman matriculants in the 1993-
1994 academic year.3 I have individual level observations on all 22,526 students in this cohort; 
variables include high school grades and SAT scores as well as longitudinal information about 
students’ collegiate academic progress. I compute a freshman GPA for each student based on 
the first year for which that student registered in any courses and discard observations with 
missing data, leaving a sample of 18,587 students.4  
 
Table 1 displays validity coefficients for this sample, estimated using the traditional methodology 

                                                 
3 I am grateful to Saul Geiser and Roger Studley of the UC Office of the President for providing me 
access to the data, which are not publicly available. One shortcoming of the current data relative to those 
used in other validity studies is that only the composite SAT score is reported, not the separate math and 
verbal components. Thus, I depart from common practice and analyze only the composite SAT's validity. 
4 One notable subset of observations which must be discarded corresponds to students at the Santa Cruz 
campus, where letter grades are optional and infrequently assigned. If Santa Cruz students differ 
systematically from the typical UC student, this may introduce selection bias even in my proposed 
algorithm. Rothstein (2002) estimates campus-specific validity coefficients that are not subject to this bias, 
and finds no evidence that it is a major problem. 
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and corrected for restriction of range in the usual way. This range correction requires 
information about the distribution of SAT scores in the population of interest. I take the relevant 
population to be all California SAT-takers, and calculate the distribution from a College Board 
data set of all California SAT-takers from the 1994-1998 cohorts.5  
 
Panel A pools all UC students into a single sample, imposing the assumption that grading 
standards are identical across campuses and majors within the system. In Panel B, I display 
validity estimates for an adjusted FGPA that permits grading standards to differ across UC 
campuses and majors.6 Other researchers have used preferable (but more data intensive) 
adjustment mechanisms (Keller et al., 1994; Young, 1990; Braun and Szatrowski, 1984a,b), but 
the one used here seems adequate for the example at hand, in which the campuses are all part 
of the same system and may, therefore, have similar grading standards. The table shows that 
validities rise when major and campus are controlled, suggesting that low-SAT and low-HSGPA 
students are disproportionately assigned to campuses and majors with easier-than- average 
grade scales. Unless otherwise noted, all further validity estimates use the adjusted FGPA as 
the variable to be predicted. 
 

Table 1: Validity estimates using usual methodology, entire UC sample  

  

Within Sample 
Corrected for 

Restriction of Range 
Panel A: Treating all UC FGPAs as directly comparable 
   Single variable    
      SAT 0.358 0.438 
      HSGPA 0.430 0.562 
   Bivariate: SAT+HSGPA 0.470 0.600 
   SAT incremental 0.040 0.037 
Panel B: FGPAs adjusted for campus and freshman major 
   Single variable   
      SAT 0.413 0.498 
      HSGPA 0.482 0.617 
   Bivariate: SAT+HSGPA 0.531 0.661 
   SAT incremental 0.050 0.044 

Note: Sample includes 18,568 observations from seven UC campuses. See text 
(note 6) for description of "adjusted" FGPA. 

 
 

                                                 
5 I am grateful to David Card, Alan Krueger, the Mellon Foundation, and the College Board for permitting 
me access to these proprietary data. A minor problem is introduced by the recentering of SAT scores in 
1995. I use the College Board's crosswalk tables (College Board, 2002) to obtain a pre-recentering score 
that approximately corresponds to each student's recentered score. Since these data are used only to 
obtain the joint population distribution of SAT and HSGPA, imprecision in the crosswalk tables should not 
affect my results. All validity estimates in this paper should be understood to apply to the pre-1995 SAT 
scoring system. 
6 This is implemented by including fixed effects for each campus and each major group in a regression 
model along with both SAT and HSGPA, then subtracting the fixed effect coefficients from the raw FGPA 
to compute an adjusted FGPA. In effect, this denies predictive “credit” to SAT and HSGPA for their ability 
to predict campus and major. 
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The SAT validity coefficients reported in Table 1 are somewhat smaller than those seen in other 
studies, but not outside the usual range (Bridgeman et al., 2000). However, because the sample 
consists only of students attending the UC, even range-corrected validity coefficients are 
potentially subject to selection bias introduced by the UC’s admissions criteria. This would be 
true for a sample drawn from any selective college, but the UC’s admissions criteria are 
unusually simple and transparent (at least at the systemwide level that concerns me here). As 
this feature is the key to my estimation strategy, it is helpful to take a moment to describe the 
UC admissions process.  
 
University of California admissions proceed in two-stages. The first is a systemwide eligibility 
determination, and is based on a few easily observed variables. Each year, the UC application 
packet includes a grid detailing the high school GPA and SAT score requirements for eligibility. 
Table 2 reproduces the 1993 grid. Students who complete a normal academic courseload in 
high school, who submit scores on all required exams, and who meet the published SAT-
HSGPA thresholds are eligible for admission to the UC system; students who do not meet these 
requirements ordinarily are not (Student Academic Services, multiple years).7  
 

Table 2: Minimum high school GPA and SAT scores for UC eligibility 

If HSGPA is: Minimum SAT score:  If HSGPA is: Minimum SAT score: 
>=3.30 elig. with any score  3.05 1050 

3.29 490  3.04 1080 
3.28 520  3.03 1100 
3.27 540  3.02 1120 
3.26 560  3.01 1150 
3.25 590  3 1170 
3.24 610  2.99 1190 
3.23 630  2.98 1220 
3.22 660  2.97 1240 
3.21 680  2.96 1260 
3.2 700  2.95 1290 
3.19 730  2.94 1310 
3.18 750  2.93 1330 
3.17 770  2.92 1360 
3.16 800  2.91 1380 
3.15 820  2.9 1400 
3.14 840  2.89 1430 
3.13 870  2.88 1450 
3.12 890  2.87 1470 
3.11 910  2.86 1500 
3.1 940  2.85 1520 
3.09 960  2.84 1540 
3.08 980  2.83 1570 
3.07 1010  2.82 1590 
3.06 1030  <2.82 not elig. 

Source: University of California Office of the President: Introducing the University, 
1993. 

                                                 
7 This is a slightly simplified version of the process governing the 1993 admissions cycle that generated 
the data used here. Additional complexities in the actual rules—for example, that students with 
extraordinarily high SAT and Achievement (SAT II) scores are eligible even with low HSGPA—are 
ignored here and do not invalidate my conclusions. It is worth noting, however, that UC admissions rules 
have changed substantially since 1993, and the estimation strategy used here would need slight 
modification to incorporate these changes. 
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After the eligibility determination is made, the eight UC campuses make separate admissions 
decisions from among their eligible applicants. The campus admissions offices consider many 
more variables than are used in eligibility determination: student essays, recommendations, and 
personal background characteristics all play a role. However, all eligible applicants are 
guaranteed admission to at least one of the UC campuses; an eligible student who is denied 
admission by all of the campuses to which she applied is offered admission at a less 
competitive campus.8 Ineligible students get no such guarantee and, in fact, can be admitted 
only “by exception”; such exceptions may not account for more than a few percent of any 
campus’ admission offers. 
 
 
3. SELECTION BIAS IN VALIDITY COEFFICIENTS  
 
An accurate model of the campus admission processes would require unusually rich data on 
student characteristics that are ordinarily unobserved by the researcher. However, the eligibility 
determination that governs access to the system is more easily modeled. The most important 
eligibility criterion is the grade and test threshold. It seems reasonable to expect that most 
students who cross this threshold also meet the other eligibility requirements.9 17,346 students 
in my sample have sufficiently high grades and SAT scores to satisfy the test score criterion. 
Assuming that these students met the coursework and test-taking criteria, they were guaranteed 
admission to at least one of the UC campuses.10 The remaining 1,241 students did not satisfy 
the test score criterion, and must therefore have been admitted “by exception,” probably 
because they had other characteristics—athletic talent or an exceptional essay, perhaps—that 
called them to admissions officers’ attention. 
 

Table 3: Range-corrected validity estimates, sample split by eligibility status 
 UC Eligible UC Ineligible  
N 17,346 1,222  
Single variable    
     SAT 0.479 0.235  
     HSGPA 0.626 0.205  
Bivariate: SAT+HSGPA 0.674 0.416  
SAT incremental 0.048 0.211  

Note : Validities are for prediction of adjusted FGPA; see text (note 6) for definition.  

 
 3.1. Selection on Observables  
 
We might expect students in the group of eligible applicants to be roughly typical of all (similarly-

                                                 
8 This system is made possible because some campuses—usually Riverside and Santa Cruz—admit 
essentially all eligible applicants. 
9 It is worth noting, however, that in the College Board SAT-taker data, many students whose SAT scores 
are above the eligibility threshold have not taken the Achievement—SAT II—exams that constitute 
another eligibility criterion (the Achievement scores themselves were not considered at the eligibility stage 
in 1993-1998; the student simply had to submit some scores). 
10 Unobserved variables are relevant to campus assignment within the system, even within this group. In 
this paper, I assume this complication away by treating the eight campuses as a single college, with 
grade scales that differ only by a location parameter across campuses. The approach taken here is 
extended to permit campus-specific validity coefficients in Rothstein (2002). 
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eligible) students with the same SAT scores and HSGPAs, but it seems unlikely that students in 
the ineligible group are similarly representative of the low-scoring population.11  
 
If the unobserved characteristics that lead admissions officers to make exceptions to the 
eligibility rules are correlated with academic potential, the unrepresentativeness of the latter 
group might bias SAT validity coefficients. On average, the lower an ineligible admittee’s SAT 
score, the better must have been the unobserved characteristics that recommended him for 
admission. Thus, we should expect that the SAT-FGPA relationship is weaker in the pool of 
ineligible students than among those who meet the eligibility criterion. Table 3, which displays 
SAT validity coefficients estimated separately for the two groups, confirms this. Only range-
corrected coefficients are shown; uncorrected coefficients are not comparable across groups 
because the range of SAT scores among eligibles is much different than that among ineligibles. 
As expected, FGPA predictions are substantially less accurate in the ineligible pool than in the 
eligible pool.  
 
This does not indicate that FGPAs are fundamentally less predictable for low-SAT, low-HSGPA 
students than for students with higher scores and grades. It occurs because the subset of low-
scoring students who are admitted to the UC is less representative of the population of low-
scoring students than the admitted subset of high-scoring students is of the population of high-
scoring students. The inclusion of low-scoring students in the sample on which the validity 
coefficients of Table 1 were estimated biases validities, mostly downward. Hereafter, I exclude 
the ineligible students, restricting analysis to the subsample of UC-eligible students.  
 
3.2. Selection on Unobservables  
 
Above, I argued that the inclusion of students admitted on the basis of unobserved 
characteristics can bias validity coefficients. Less obviously, even admission on observed 
characteristics biases within-sample coefficients, in predictable directions. The argument is 
made more rigorously in Section 4, but the basic idea is best explained without mathematics: 
although students in the UC-eligible subsample may be presumed representative of the 
population of students with the same SAT scores and HSGPAs, they are not representative of 
the wider group of students with the same SAT scores: conditional on SAT score, high-HSGPA 
students are overrepresented and low-HSGPA students are underrepresented. Consider the 
population of students with SAT scores of exactly 900. The College Board data—describing the 
universe of California SAT takers in 1994 through 1998—include nearly 8,000 students with this 
score; their HSGPAs have mean 3.25 and standard deviation 0.55. The subsample of eligible 
UC students contains 205 with SAT scores of 900; their HSGPAs have mean 3.69 and a 
standard deviation of only 0.36. The reason for the disparity in HSGPA distributions is seen in 
Table 2: Students with 900 SATs need HSGPAs of at least 3.12 to be UC-eligible, so the 
eligibility rules omit 900-SAT students with low HSGPAs.  
 
Because HSGPA has independent predictive power for FGPA, we should expect the UC-eligible 
students with SAT scores of 900 to achieve higher average FGPAs than would have been seen 
if the UC had admitted all applicants with 900 SAT scores. If the UC sample were equally 
unrepresentative of the population at all levels of the SAT distribution, the sample selection 

                                                 
11 The former claim relies on an assumption that students’ decisions to apply to and enroll at the UC are 
uninformative about their academic ability. If this assumption—maintained throughout but unverifiable in 
the data used here—is violated, validity coefficients could be biased either up or down, depending on the 
direction and magnitude of the induced selection pressure at different points in the SAT distribution. Of 
course, traditional validity estimates would be subject to the same bias. 
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described here would not necessarily bias the SAT validity coefficient. However, the UC 
eligibility rules—like all admissions processes—allow high SAT scores to offset low HSGPAs, 
making the HSGPA selection more stringent at lower SAT scores. Students with 1500 SAT 
scores are UC eligible with HSGPAs of 2.86 or higher; 99 percent of students at or above this 
SAT score are UC-eligible. However, students with SAT scores below 490 must have HSGPAs 
of at least 3.3 to be eligible, a requirement that only 15 percent can meet. In between, 62 
percent of students with SAT scores between 900 and 950 are eligible. Thus, UC students are 
less representative of the population at the bottom of the SAT distribution than at the top.  
 

Figure 1A: Conditional Expectation of HSGPA Given SAT   

 
Figure 1A displays this argument in graphical form. It shows the relationship between SAT 
scores and conditional mean HSGPA in three groups: The population of SAT-takers in 
California, the original sample of all UC students, and the subsample of UC students who 
appear to be UC-eligible. The figure shows that low-SAT students in the UC samples have 
substantially higher HSGPAs, on average, than do typical low-SAT students, and that the 
disparity is largest at the lowest SAT scores. This tends to flatten the relationship between 
FGPA and SAT in the UC sample, depressing the measured SAT validity.  
 
It is worth emphasizing that this is a different problem than the bias introduced by the inclusion 
of ineligible students discussed in Section 3.1: That bias came from the consideration of 
unobserved variables in admissions decisions, while this problem arises because an observed 
variable that was considered in eligibility and admissions is not accounted for in the partial 
correlation of SAT scores with FGPAs. The bias indicated by Figure 1A would exist at any 
selective college that considered characteristics other than the SAT score itself in admissions.  
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Figure 1B: Conditional Expectation of SAT Given HSGPA    

 
 
Figure 1B provides a different view of the data, displaying the relationship between HSGPAs 
and conditional mean SAT scores. UC students at low HSGPA levels are unrepresentative of 
the population of low HSGPA SAT-takers: their SAT scores are much higher than is typical in 
the population. This is simply the converse of the phenomenon discussed earlier; the UC 
eligibility rules allow high SAT scores to make up for low HSGPA. However, it means that the 
HSGPA validity measured in the UC sample is also biased downward. This is not important if 
the SAT’s validity is the only parameter of interest, but it does bias estimates of the SAT’s 
incremental validity. Incremental validity coefficients are estimated by subtracting the HSGPA 
validity coefficient from the joint validity coefficient of HSGPA and SAT, taken together. Unless 
bias in the latter exactly offsets bias in the former, the SAT’s incremental validity is biased.  
 
In fact, the joint validity coefficient is not biased when estimated on the UC-eligible subsample 
and corrected for restriction of range. To see this, consider students with 1000 SAT scores and 
3.50 HSGPAs. All students of this sort are UC eligible. If the UC were to admit the 63 students 
with these qualifications in the College Board data—as, in fact, it probably did, although I cannot 
match College Board observations to UC outcomes—there is no reason to think that their mean 
FGPA would be any different from the 3.48 seen among the ten students in the UC data with the 
same qualifications. This is selection on observables: As long as HSGPA and SAT are the only 
variables determining selection into the analysis sample, a regression of FGPA on both HSGPA 
and SAT yields unbiased coefficient estimates (Wooldridge, 2000, pg. 299).  
 
The selection-on-observables result guarantees only that the multiple regression coefficients are 
unbiased. The restricted range of HSGPA and SAT in the UC sample still biases uncorrected 
validity estimates downward. However, this is exactly the situation for which the usual 
“restriction of range corrections” are designed: given unbiased regression coefficients, they 
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produce an unbiased corrected validity coefficient (Gulliksen, 1950). Thus, the UC-eligible 
subsample permits unbiased estimation of the joint validity.  
 
It is important to note that range corrections do not correct the bias in the HSGPA or SAT 
univariate validity coefficients. The argument is spelled out in greater detail in Rothstein (2002), 
but for the present purposes it suffices to point out that a regression of FGPA on either HSGPA 
or SAT separately yields coefficients downward-biased by selection-on-unobservables (the 
omitted variable is observed in the data, but because it is not controlled for in the regression the 
bias is not avoided). Restriction-of-range corrections only magnify bias in regression 
coefficients, so even range-corrected univariate validity estimates are downward-biased. It 
follows from this that SAT’s incremental validity is upward-biased.  
 
 
4. A MORE ROBUST APPROACH  
 
The above discussion suggests an estimator of the SAT’s univariate validity that is free of the 
selection bias shown above. The problem, essentially, is to estimate how much of an FGPA gap 
one should expect to see between a randomly-selected student with an 1100 SAT score and 
another with a SAT score 100 points lower. The estimation approach implied by traditional 
validity research is to regress FGPA on SAT in the sample, estimating the mean gap at one 
hundred times the SAT’s coefficient. The FGPA gap implied by the UC-eligible SAT validity 
estimate in Column A of Table 3 is 0.14 GPA points.12  
 
However, HSGPA’s role in sample selection, coupled with its independent predictive power for 
FGPA, means that this is not a reasonable estimate of the population FGPA gap between 
students 100 SAT-points apart. Conceptually, the gap can be decomposed into two parts: one 
arising from the different HSGPAs we expect the two students to have and one reflecting the 
SAT’s incremental predictive power. As Figure 1A shows, the population HSGPA gap between 
the two students is larger than that seen in the sample, so the first part of the decomposition is 
understated by the traditional approach. Using the methods introduced below, I find that the 
expected FGPA gap between two students with SAT scores 100 points apart is 0.18 GPA 
points, nearly one-quarter larger than that implied by the within-sample estimate.  
 
To express the above argument more formally, it is useful to turn to a regression model of the 
relationship between predictors and outcome. Let Xi and Zi (SAT and HSGPA) be two predictors 
of an outcome yi (FGPA) for individual i. Assume that in the population the conditional 
expectation of yi given Xi and Zi satisfies  

  [ ] 000,E γ+β+α= iiiii ZXZXy  (1) 

This implies that when we condition only on i X , as when we are estimating X ’s univariate 
validity,  

  [ ] [ ] 11000 EE β+α=γ+β+α= iiiiii XXZXXy  (2) 

where  

  
[ ] [ ] 








ρ−+α=α

)(var
)(var

EE01 X
Z

XZ XZ
, 

                                                 
12 The validity coefficient is a transformation of the regression slope; the exact relationship is discussed 
below. 

CSHE Research & Occasional Paper Series 



 
Rothstein, ADMISSIONS BIAS 11 
 

  
001 )(var

)(var
γρ+β=β

X
Z

XZ
, (3) 

and ρXZ is the correlation between X and Z (Wooldridge, 2000, pg. 89). The crucial parameter is 
β1.13 The traditional approach implicitly uses the within-sample correlation between X and Z 
(0.38 in the UC-eligible data) and within-sample variances in (3). The essence of my approach 
is to use the population correlation (0.52 in the College Board data) and variances in place of 
their sample analogues. Thus, the proposed algorithm, incorporating traditional range 
corrections and new omitted variables corrections, is as follows:  
 
4.1. An algorithm for validity estimates without selection bias  
 
1.  Regress  on and  in the analysis sample. Extract from this regression estimates of y

,0

X Z

,, 00 γβα  and σ , the residual variance. Because the sample is assumed to 
be selected on the basis of and  alone, these estimates are consistent for their 
population values (Wooldridge, 2000, pg. 299). The analysis sample can now be discarded; 
all other calculations are carried out using population data.  

),| ZXy≡
X

(var2

Z

 
2.  For the restricted regression models  

  [ ] 11|E β+α= iii XXy  and  (4) 

  [ ] 22|E γ+α= iii ZZy ,  (5) 

 calculate the coefficients and residual variance implied by the parameters estimated in step 
1 and the population moments of and .   is as above in (3); the other omitted 
variables estimates are:14  

X Z 1β̂

002 )(var
)(var

ˆ βρ+γ=γ
Z
X

XZ , 

 ( ) )var(1)| 22
0

2 ZX XZρ−γ+σ=(râv y , and (6) 

( ) )var(1)|(râv 22
0

2 XZy XZρ−β+σ= . 

                                                 
13 ’s validity is X

)(var
)(var

1 y
X

yXX β=ρ≡R .  The terms in the latter fraction are those repaired by 

corrections for restriction of range, which can permit a consistent estimate even when the sample 
variance of  is small but which requires a clean estimate of (1). X
14 These formulae are needed when only the variance-covariance matrix of (  is available for the 
population. With individual-level observations, a simple way to calculate the omitted variables coefficients 
and residual variances is to generate predicted values from the regression estimated in step 1, then 
regress these predicted values on and —separately—in population data (in my example, the 
College Board data). The coefficients from these regressions are the omitted variables coefficients 
described in (3) and (6); the residual variances are the final terms in the expressions for  and 

 in (6). 

),ZX

X Z

)|(râv Xy
)|(râv Zy
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 (I omit the estimators for  and α ; these are nuisance parameters that, because they are 

constants, do not contribute to explained variation.) 
1α 2

3. If individual-level observations for the population are available, compute predicted values for 
each observation in the population based on each of the three regression models, using the 
omitted-variables coefficient estimates from step 2: 

  (7) 

Under the selection assumptions, these—not fitted values from least-squares estimation of 
(4) and (5)—are the best linear predictors for the population.  This step is useful primarily as 
an aid to intuition; the next step suggests how it can be skipped when only aggregate 
population variances and correlations are available.  
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4.  If the hypothesized model (1) holds, and if the actual  could be observed for every 
individual in the population, we would see that  

.  Thus, using the interpretation of validity coefficients as the square root 
of the explained share of variance, estimate them as: 
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 (8) 

 Given the regression coefficient estimates from step 2, the final expression of each validity 
requires only population variances and covariances to calculate, and can be used by 
researchers without access to individual-level population data. The above provide consistent 
estimates of the population validities as long as the sample is selected on the basis of 

and  alone.  ’s incremental validity is simply R . X Z X ZXZ R̂ˆ −
 
Several of the above steps can be collapsed into algebraically simpler (but conceptually less 
clear) calculations. Indeed, the usual validity estimator is identical to that produced by this 
algorithm, with one important exception: its estimates replace the population variances and 
correlations in (3) and (6) with their sample analogues. As demonstrated in Section 3, when 
both X and Z enter into the selection rule, the within-sample correlation between X and Z can be 
a poor estimate of its population value; as a result, neither 1β  nor 2γ  is consistently estimated 
by within-sample regression.15  
 
The above algorithm is easily generalized to cases where more than two variables enter the 
selection process, or where we are interested in the incremental validity of the test score with 

                                                 
15 When only one of the variables affects selection, one of the regression coefficients and one of the 
univariate validities is consistent; the other is not. 
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respect to a variable other than those determining selection. The key point is that the original 
regression model, (1), must include all variables determining selection as well as all variables 
used in prediction. Omitted variables formulae based on population covariances are then used 
to remove variables from this original model without introducing selection bias. Thus, the 
approach can only be fully implemented if the researcher can observe all determinants of 
sample selection. However, even when the data do not permit this, a limited version of the 
approach can serve as a diagnostic for selection bias: If validity estimates produced using the 
traditional methods differ greatly from those produced by the above algorithm when all available 
variables that might predict y are included in (1), the traditional estimates are likely biased.  
 
It is worth repeating that the proposed approach is only sensible if population validity 
coefficients are of interest, in which case it is consistent under far more general sample 
selection assumptions than is the usual methodology. In the event that the researcher is 
interested in the within-sample validity, however, there can by definition be no selection bias in 
the traditional methods. 
 
 
5. RESULTS  
 
Table 4 presents regression parameters and validity coefficients for the UC-eligible subsample. 
The first column lists the parameters implied by the traditional approach to validity estimation, 
while the second implements the omitted variables approach proposed in Section 4. As argued 
there, the traditional approach underestimates 1β  and 2γ , leading to downward-biased univariate 
validity coefficients. The difference in estimates from the two approaches is substantial: The 
usual estimator for the SAT’s univariate validity, when applied to the UC-eligible subsample, is 
10 percent lower than the selection-corrected estimate, while the SAT’s incremental validity is 7 
percent too high. 
 

Table 4: Traditional and new estimates of validity parameters 
 Traditional 

Estimates New Approach 
Bias in 

Traditional 
Population validities    
     SAT 0.479 0.533 -10.2% 
     HSGPA 0.626 0.630 -0.5% 
     Bivariate: SAT+HSGPA 0.674 0.674 --- 
     SAT incremental 0.048 0.045 7.1% 
Regression parameters    
     corr(SAT, HSGPA) 0.378 0.520 -27.3% 
     β1 0.0014 0.0018 -19.3% 
     var(y | SAT ) 0.346 0.398 -13.2% 
     γ1 0.726 0.744 -2.4% 
     var(y | HSGPA) 0.326 0.336 -3.1% 

Notes : Validites are for prediction of adjusted FGPA; see text (note 6) for 
definition. All estimates based on subsample of 17,346 UC-eligible observations.  

 
Table 5 provides several alternative specifications. The first row repeats estimates from Table 4. 
In the second row, I eliminate the campus and major adjustment that has been used throughout, 
treating all UC grades as directly comparable. As noted above, unadjusted FGPAs are not as 
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accurately predictable as adjusted FGPAs, suggesting that campuses and majors with low-SAT 
and low-HSGPA students have less rigorous grading standards. The selection bias in validity 
coefficients is even stronger in this specification, however.  
 
The second row considers a different measure of student outcomes: The 5-year cumulative 
GPA, adjusted by the same mechanism as that described for FGPA in footnote 6. This variable 
is slightly less predictable than is FGPA, but estimates of the SAT’s validity for this outcome are 
seen to be subject to the same selection bias as those for FGPA. Finally, the remaining rows 
present estimates of SAT validity for FGPA computed separately for each race-gender 
combination. Again, the general results are similar to those seen in earlier estimates that pooled 
all students into a single group.  
 

Table 5: SAT validity in alternative specifications 
 

SAT Univariate Validity SAT Incremental Validity 
 Trad. New Bias Trad. New Bias 
Base Model 0.479 0.533 -10.2% 0.048 0.045 7.1% 
No Campus/Major 
Controls 0.416 0.476 -12.6% 0.041 0.037 12.9% 
Pred. Of 5-year 
Cumul. GPA 0.452 0.509 -11.2% 0.046 0.042 9.5% 
Within-Gender/Race        
   Male White 0.493 0.535 -7.8% 0.050 0.042 20.6% 
 Black 0.321 0.399 -19.5% 0.165 0.086 92.5% 
 Hispanic 0.386 0.459 -16.0% 0.070 0.057 23.2% 
 Asian 0.472 0.533 -11.4% 0.047 0.036 30.9% 
   Female White 0.521 0.552 -5.6% 0.047 0.045 3.1% 
 Black 0.314 0.364 -13.7% 0.091 0.082 11.4% 
 Hispanic 0.383 0.449 -14.6% 0.048 0.051 -5.2% 
 Asian 0.502 0.536 -6.4% 0.053 0.053 -0.4% 
Notes: All estimates based on subsample of 17,346 UC-eligible observations 
(broken into 8 groups for the within-gender/race cells). Validities are for 
unadjusted FGPA (row 2), adjusted five-year cumulative GPA (row 3), and 
adjusted FGPA (all other rows). See text (note 6) for description of adjustment 
procedure.  

 
 
6. CONCLUSION  
 
The validity literature has paid little attention to the substantial statistical difficulties introduced 
by the use of selected samples for estimation. The primary exception to this generalization, the 
use of restriction of range corrections, has frequently been treated as a magical technique that 
repairs all sample selection bias (Camara and Echternacht, 2000; Hezlett et al., 2001). In fact, 
range corrections are appropriate only under very specific selection assumptions and are never 
appropriate for more than one statistic in a given sample: If the sample is assumed to be 
selected solely on the basis of SAT scores, SAT’s univariate validity may appropriately be 
range-corrected; if selection is on SAT and HSGPA, but nothing else, their joint validity—but not 
SAT’s univariate or incremental validity—may be corrected.  
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There are no statistical assumptions that can justify the standard practice of estimating both 
univariate and incremental validity parameters that do not take account of sample selection 
except through simple restriction-of-range corrections. I have proposed an approach to sample 
selection bias that is consistent under plausible assumptions—namely, that only variables 
observed by the researcher in both the sample and the population influence selection. These 
assumptions are difficult to satisfy, but they are always more general than those required for the 
consistency of unadjusted or range-corrected validity estimates. Moreover, even when the 
necessary assumptions are not met, the new approach suggests a diagnostic for some forms of 
selection bias in validity estimates.  
 
Under the sorts of conditions that generate most estimation samples, uncorrected and range-
corrected validity coefficients are substantially biased, in predictable directions. Estimates of 
univariate validity understate the true parameters, while incremental validity estimates are 
biased upwards. Since incremental validity coefficients are often the true measure of an exam’s 
utility, the selection bias discussed here may lead to the overuse of uninformative exams.  
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